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ABSTRACT 

Conformal mapping was used to obtain the f r e e  streamline pattern and surface pres -  
sure  distribution for downward je t  flow issuing from two parallel slot nozzles. 
striking the ground, a portion of the flow from each jet moves along the ground toward 
the centerline between the je ts .  When these two portions collide, an upflow resul ts  
which s t r ikes  a plate above the ground simulating the undersurface of an airplane fuse-  
lage. Typical flow patterns a r e  shown to illustrate the effect on the f r e e  s t reamlines  of 
nozzle height, nozzle spacing, plate height, plate width, and plate angle. 
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ANALYSIS OF TWO DIMENSIONAL INVISCID MODEL OF JET 

IMPINGEMENT UNDER VERTICAL-TAKEOFF AIRPLANE 

by Robert Siege1 and M a r v i n  E. Goldstein 

Lewis Research Center 

SUMMARY 

Conformal mapping was used to obtain the f r ee  streamline pattern and surface pres-  
sure  distribution for downward jet flow issuing from two parallel slot nozzles. 
striking the ground, a portion of the flow from each jet moves along the ground toward 
the centerline between the jets. When these two portions collide, an upflow resul ts  which 
s t r ikes  a plate above the ground simulating the undersurface of an airplane fuselage. 
Typical flow patterns are shown to illustrate the effect on the f r e e  streamlines of nozzle 
height, nozzle spacing, plate height, plate width, and plate angle. 

After 

INTROD UCTl ON 

Under a vertical-takeoff (VTOL) airplane, as illustrated by figure 1, there  is a com- 
plicated flow pattern. 
ground, and a portion of the flow is turned outward and flows along the ground. The 
remaining flow moves inward, and under the fuselage the opposing s t reams collide and 
move upward. Portions of this upward flow will  move around the fuselage or  will r ec i r -  
culate under the wings. The upward flow in some instances provides a useful lifting 
force. However, it is generally undesirable because of recirculation of hot exhaust 
gases  around portions of the airplane. 
into the engines, along with dust and debris f rom the ground that has been entrained 
(refs. 1 and 2). 

many instances of turbulent mixing, makes the analytical prediction of the three- 
dimensional flow flow field under a vertical-takeoff airplane extremely difficult. 
obtain analytical solutions a simplified incompressible, isothermal flow model is employed 
herein that retains some of the major features of the actual flow field. The analysis is 

The downward directed je ts  in figure l(b), react against the 

. 

This recirculating flow may be partially ingested 

The complicated interaction with the ground and the airplane, and the presence in 

To 



(a) Plan view of  airplane. 

CD-10386-02 
(b) Flow pattern under airplane. 

Figi lre 1. -Flow configuration for  fan-pod VTOL aircraft.  

an extension of that in reference 3.  As shown in figure 1, a fan-pod type of configuration 
is being considered. A two-dimensional approximation will be made to  study the flow in 
the region between the engines. 
mately t rue when the nozzle exit planes a r e  within a few nozzle widths of the ground and 
within a few widths apart. 
surrounding fluid into the jet region prior to the flow being turned by the ground and 
turned under the fuselage. 
which can be at an angle to  the ground, has been used to  simulate each half of the under- 
surface of the fuselage. 

By using a two-dimensional inviscid model, the determination of the flow field 

The flow is assumed to  be inviscid; this could be approxi- 

For  these conditions there will be only a small entrainment of 

The two-dimensional model is shown in figure 2. A plate, 
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‘L G rou n d  

F igure 2. -Two-dimensional model of jet deflection by ground and fuselage. 

becomes a free streamline problem in constant pressure  surroundings. A solution can 
be obtained by using the Helmholtz-Kirchhoff method (ref. 4). This conformal mapping 
procedure is used to find a functional relation between the complex conjugate velocity and 
the complex potential of the flow. Then the flow configuration is obtained by integrating 
the complex potential multiplied by the reciprocal of the complex conjugate velocity. 

assumed herein is that the flow leaves perpendicular to the nozzle exit plane. This is a 
reasonable condition for  nozzles of small  width o r  when turning vanes are used to guide 
the flow. The interaction of the flow with the ground produces a nonuniform downward 
velocity leaving the nozzle; the velocity in the central region of the nozzle exit plane is 
l e s s  than that along the nozzle sides.  

The final analytical resul ts  were evaluated fo r  several  combinations of the param- 
eters, such as plate height, plate width, and spacing between nozzles. 
streamline flow patterns a r e  given along with the pressure coefficient along the plate, and 
the velocity distribution across  the nozzle exit plane. In addition to revealing the nature 

ground and fuselage. 
is needed to compute viscous entrainment by the flow. 

The flow pattern depends on the flow condition leaving the nozzle. The condition 

Typical f r e e  

b of the flow, the inviscid solution provides the upper limit of the pressures  achieved on the 
The inviscid solution is also the zeroth order configuration which 

SYMBOLS 

A a constant 

a constant 

pressure coefficient 
AO 

cP 
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quantity defined in eq. (A8) 

flow region in p p l a n e  

flow region in W-plane 

complete elliptic integral of first kind 

defined by K'(k) = K(kl)  

modulus of elliptic integral 

defined as d K 2  
quantity defined in eq. (18) 

pres  sur  e 

ambient pressure outside jets 

functions defined in eqs. (B4) anc ) of r e  3 

functions defined in eqs. (B2) and (B3) of ref.  3 

complex variable in T-plane, [ + i q  

complex variable in t -plane 

velocity in x-direction 

velocity 

velocity at nozzle exit 

average velocity at nozzle exit 

velocity along f ree  streamlines 

velocity in y-direction 

complex potential, @ + i+b 

coordinates of center of nozzle exit plane nondimensionalized by A 

coordinates in physical plane 

complex variable, x + iy 

tilt angle of plate, fig. 3 

flow region in T-plane 

angle of deflected jet, fig. 3 

width of nozzle 

widths of s t reams flowing to left and to right 

,i 
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t 
P density 

5 ,  rl coordinates of T-plane 

0 quantity defined in eq. (A?) 

9 velocity potential 

Q stream function 

51 function defined in appendix A of ref. 3 

Subscripts: 

complex conjugate velocity, u - iv 

A,G,H 

f fuselage 

g ground 

L flow to left 

refer  to stagnation points, fig. 3 

R flow to right 

ANALY SI S 

The analysis presented herein is a generalization of, and quite similar to, that given 
in reference 3.  
will be discussed in detail. 
metr ic  about a vertical plane between the nozzles, hence only half the flow field need be 
considered. 
Since the region outside the jet  is at constant pressure,  Bernoulli's equation shows that 
the velocity has constant magnitude along the f ree  streamlines a, f?, and a. 
direction of the velocity must be along the boundaries on AB, AG, and 
respectively to the bottom of the fuselage, the vertical line of symmetry, and the ground. 
The point H is a stagnation point at which the direction of the velocity along 
reverse.  
left. 
vertically downward . 

ified conditions on the velocity at the boundaries of the flow field, it can be deduced that 
the flow field in figure 3 maps into the interior of the region I of the hodograph plane 

For  this reason only those par ts  of the analysis differing from reference 3 
The configuration of the flow, as shown in figure 2, is sym- 

The boundaries of the jet in the physical plane (z-plane) a r e  shown in figure 3 .  

The 
n-  corresponding 

must 
The dashed line is the dividing streamline of the flows going to the right and 

the velocity is The points G and A a r e  also stagnation points. Along the line 

A s  in reference 3, let be the complex conjugate velocity u - iv. From the spec- 
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Figure 3. -Flow boundaries i n  physical z-plane (z = x + iy). 

I 

Figure 4. - Flow region i n  hodograph (-plane 
(( = u - iv). 

shown in figure 4. Let W = @ + ilc/ be the complex potential for  the flow, where @ is 
the velocity potential and lc/ is the stream function. Considerations analogous to those 
in reference 3 show that the flow field maps into the interior of the region J of the complex 
potential plane in figure 5. 

The solution in the physical plane is obtained from the integration 

z = f dW + constant 

To carry out this integral, and W must be  expressed in t e r m s  of the same vari-  
able of integration. This is done by appropriately mapping the rectangular region I? of 
an intermediate T-plane (described in ref.  3 and depicted in fig. 7) into the regions I and 
J of the 5 and W planes, respectively. The corresponding positions of the boundaries 
of r, I, and J are indicated by the lettering scheme in figures 4, 5, and 7. 

IC F 

Figure 5. - Complex potential plane (W = @ t io). 
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Mapping Function Between 5 and T-Planes 

The function 5 which properly maps the rectangle r into the region I of the 
E-plane can be  constructed by using the function S2 defined and studied in appendix A of 
reference 3. By a procedure completely analogous to that in reference 3, it can be 
demonstrated that the proper mapping function 5 is given by 

provided that the relation between tH, tG, and tA is chosen to  satisfy the following 
requirement. Along the plate the argument of [(T) must equal the direction along 
the plate, so that from figure 4 

It follows by the use of equation (A24) of appendix A of reference 3 that the argument 
of equation (2) is 

a r g c ( ~ ) = - + -  f l  T ~ H  - + I  ) + - - + I  ) + - - + I  j3p ) ; TEAS 
2 2 K  4 K  2 K  

Equating the previous two expressions for arg <(T) gives the condition relating tH, 
5G7 and (A: 

Mapping Function Between W and T Planes 

The function W which properly maps the rectangle r of the T-plane (fig. 7) into 
the region J of the W-plane (fig. 5) can be constructed by use of the intermediate t-plane 
shown in figure 6. An application of the Schwarz-Christoffel transformation shows that 
the mapping that transforms the upper half t-plane onto the region J of the W-plane in 
the manner indicated in figures 5 and 6 is defined by 
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Figure 6. - Intermediate t-plane. 

t - tH 

(1 + kt)(tF - t)  

-- dw - iAo * h t > o  
dt 

(4) 

Now it is shown in reference 3 that the rectangle r of the T-plane is mapped onto 
the upper half t-plane (fig. 6) by 

t = sn(T, k); T E r (5) 

This can be combined with equation (4) to eliminate t and find the desired mapping 
from the T-plane to the W-plane. The relation given in reference 3 is used 

along with the relation 

i 

Upon carrying out this procedure the required function that maps r onto J is found 
to be 

(ksntHsnT - 1) dnT 
-- dW - iA - T E ~  
dT (1 + ksnT)[l - dn(qi ,  k')snT] ' 

where A is a new constant equal to 
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By using partial fractions equation (6) can be rewritten as 

iA k(1 + SnSH) dW - ~- v 1 - sn T (1 +ksnT)  

c- c D 

Integrating this expression and neglecting an unimportant integration constant give 

The flow through the nozzle is equal to the difference between the stream function at 
points D and C. Noting that W = Q, + i+ and that @(C) = Q,(D), the flow must equal 
+(D) - +(C) = b ( D )  - W(C]/i. When the coordinates of D and C in figure 7 are used, 
the flow throughthenozzlebecomes: E ( - K  + io) - W(K + iO]/i. Hence, if VI is the 
average velocity at the nozzle exit, 

- 
V A =  I 

W(-K + io) - W(K + io) 
i 

p s n T  DsnT . 
dt . I. 

11 - tZ - dn(qF, k ' )q  J 

- - k ( l  + snSH)sn(qF, k') sin-' + snT 
k ' sn(qF~ + &(?7F, "1 k') - k sn td  sin-' [I + k s n T j  

iA 
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Using the fact  that sn(&) = *1 and choosing the appropriate branches for  the inverse 
sine, we find from equation (7) 

W(K) = iA {[h(qF7 k') - ksnt;H] 
k'sn(qF, k')k dn(qF, 1 2 

W(-K) = iA {[&I(., k') - k s n g d  - k ( l  + sntH)sn(qF, k') 
k'sn(r7F7k')[k + dn(qF,k'j] 2 

Hence, 

which gives the constant A as 

- 
A A = - k'sn(qF, k') 

71 

An alternate form for  A will be given by equation (15). 

The asymptotic width of the flow region to the right is designated by 6R, and that to the 
left by tjL. The flow to the left must equal the jump in the imaginary part of W at the 
point F. In order to evaluate this jump, notice that F is at T = K + i% along the 
boundary T = K + i q  in figure 7 and that 

As shown in figure 3, the interaction of the jet with the ground causes it to divide. 

1 sn(K + iq) = 
dn(r1, k') 

Then, along this boundary, the inverse sine t e r m s  in W (eq. (7)) become 

10 



k') - dn(*,k',] 
2 

where 

sin-' 

where 

k +  

1 +  
= -i In i { dn(q, k ')  + k 

+ k' 

k dn(q, k') + kf2sn(q7 k') + 1 
k + dn(q, k') 

f 2 ( d  = ~~ 

)/dn2(q7k') - 11 

Since 0 < dn(q, k') I 1 aqd sn(q, k ')  is positive for 0 I q I K' it is found that 
fl(q) > 0 and f2(q) > 0 for 0 5 q 5 K' and, consequently, the logarithms of f l  and f 2  
a r e  real. 

substituting in equation (7) gives 
Hence, choosing the appropriate branch for  the In k') - d n ( w ,  k ' l  t e rm and 
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%W(K + iq) = AT 1 [Idn(qF7 k') - k P ? I < ~  
k'sn(qF, k?)[k + dn(*,k'] 2 

Since the velocity at the point F must be Vo, it follows from equations (9)'and (10) that, 
if GL is the asymptotic perpendicular jet  width (fig. 3) and E > 0, 

Equation (8) is used to eliminate A giving 

k + dn(qF7 k') - k ( l  + sn tH)  

k + dn(qF, k ' )  - k ( l  + SntH)F - sn(qF, k ' g  
GLV0 =VI A - -  ~. 

Continuity requirements dictate that 

GRV0 + GLV0 = ATI 

Hence, using equation (ll), the 6L can be eliminated to obtain 
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From equations (12) and (11) the ratio of asymptotic widths is 

By rearrangement 

and 

Using equation (14) in equation (8) gives the constant A as 

n L 1 + -  6R 

6L - 

Integrat ion t o  Yield Coordinates in Physical Plane 

When the complex conjugate velocity 6 and the complex potential W as functions of 
the parametric variable T a r e  known, the physical variable z can be  found as a function 
of T by using equation (1). 
the W-plane, so that equation (1) becomes 

The integration is carr ied out in  the T-plane instead of in  

13 



The origin of the coordinate system has been chosen at the point G. Substituting equa- 
tions (2), (6), and (15) in equation (16) gives 

r $1 

6R "1 l+q . 

Average Velocity at Nozzle Exit 

To find an expression for vI/Vo, note that the nozzle width is given by 

A = z(-K + io) - z(K + io) 
Then it follows from equation (17) 

The quantity M defined in this equation will be used subsequently. 

Pressure Coefficients 

The pressure coefficients C and C along the ground and fuselage are defined 
P, g P,f  

by 

14 



P(X, 0) - Po 

Pt g 1 2  - PV0 

c =  

2 

P(xf,Yf) - Po 

- PV0 1 2  
2 

Cp,f = 

where xf,yf are the coordinates of the points along the fuselage. Using Bernoulli's 
equation gives 

Cp,f = 1 - 

Summary of Analyt ical  Relations 

For  convenience, the resul ts  of this section are now collected in one place. 

sn tH = L 

- 6R k + k Sn(qF, k') 
6, 
L 
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W(T1 i 1 . I _  - 
VI A 7~ [&(qF, k')+k] + (1 + sntH)kF(17F'  k') - 

1 dn(w,k ' )  - snT 

dn(%,k')snT - 1 
k') - k sntH] sin-' [ 

-1 k + snT 
[l + k snT]} (7' 8, 

- k ( l  + snCH)sn(W7 k')  sin 

- 
- k(l  + Sn<H)Sn(%7 k')  

A Vo k + dn(qF,k') - k ( l  + SntH)[l - Sn(qF,k'i] 

Cp,f = 1 - 

Additional forms of equations (2) and (17) that a r e  useful for  computer evaluation are 
given in the appendix. 
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C OM PUTATl ONA L PROCEDURE 

If all coordinates a r e  nondimensionalized by the nozzle width A, there a r e  five 
independent parameters governing the flow configuration: plate (fuselage) height above the 
ground, plate width, plate angle, nozzle height, and spacing between nozzles. The plate 
angle 0 appears explicitly in the analytical expressions and can be directly specified as 
an input variable in the computer program used to evaluate numerical results.  The other 
four physical quantities must be found by computation in t e r m s  of four convenient input 
quantities all having values between 0 and 1: k, 6L/6R, vF/K', and tA/K. 
chosen k, the k', K, and K' can be foundfrom 

From a 

k' = ,'1 - k2 

dw 1 '  d 1  - k2 sin2 w 

K(k) = 

K'(k) = K(k') 

Then tH can be found from equation (14), and all quantities which a re  necessary to 
determine tG from equation (3) will then be known. The quantities M and vI/Vo are 
then found by carrying out the integration in equation (18), using the S2 functions eval- 
uated by the method described in the appendixes of reference 3.  The dimensionless width 
of the s t ream flowing to the right 6R/A is evaluated from equation (12), and 6,/A is 
computed from (6R/A)(6L/6R), where 6L/6R is one of the specified input quantities. 

and its width by integrating equation (A5) to an upper limit of K. 
along with the specified angle p,  fix the position of point B. The streamline can 
then be plotted by use  of equation (A12). 
to fix the horizontal position of the nozzle. 
along the right f r ee  streamline is found from the second of equations (A9) by integrating 
to an upper limit of K'. 
zle height. 
tions (A9) and ( A l l )  and a r e  drawn starting, respectively, from points D and C.  

and (20) using the velocities evaluated from the second equations of (A4) and (A5). 

With all these quantities evaluated, the height of the plate is found from equation (A6), 
These dimensions, 

The distance in equation (A10) is then evaluated 
The vertical separation of points D and E 

This distance, along with 6R/A, is used to determine the noz- 
The f r ee  streamlines originating at the nozzle are then computed from equa- 

The pressure coefficients along the ground and fuselage are found from equations (19) 
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RESULTS AND DISCUSSION 

As revealed by the analysis, there are several  independent parameters  (all made 
dimensionless by dividing by the nozzle width) governing the flow: the nozzle height, 
spacing between nozzles, plate height, plate width, and plate angle. It was not feasible 
to systematically compute flow patterns for the wide variety of possible combinations of 
these parameters.  To limit the number of computed flow patterns somewhat, the plate 
simulating the underside of the fuselage was fixed in a horizontal orientation with the 
exception of the resul ts  shown in figure 12 where a comparison is made with a plate tilted 
at 45'. The plate was generally positioned at the same height as the nozzle, and only two 
nozzle heights were considered (YN = 1 and 2). 

Consider figure 8(a) as a typical set  of results.  On each set  two cases are given, one 
in solid lines and the other dashed. Each case shows the velocity distribution across  the 
nozzle exit plane, the f r ee  streamlines bounding the moving fluid, the pressure coefficient 
along the ground, and the pressure coefficient along the plate (fuselage). 

Figures 8(a) and (b) illustrate the effect of moving the nozzle and plate upward to- 
gether, as when the airplane is taking off. Part @) is for  a longer plate than part  (a), but 
both portions of the figure exhibit the same general features. In the upper position the 
exit velocity from the nozzle is more uniform; hence, the flow is increased a s  the nozzle is 
raised since there  is less reaction from the ground. The increase in flow resul ts  in the 
integral of the ground pressure coefficient being a little la rger  for  the upper nozzle posi- 
tion, thus providing a small  increase in lift. The pressure coefficient acting on the under- 
side of the plate is decreased a little as the plate and nozzle a r e  raised, thereby reducing 
the lift on the fuselage. In figure 8@) the stream deflection by the date is so large for 
the upper nozzle position (dashed) that t h e  stream passes back into the region of the nozzle 
exit. In an actual flow the two s t reams would collide. 
allow for such interference and permits the two s t reams to pass independently through 
each other (on different sheets of the complex plane). 
ence and probably a recirculating flow region for  this configuration. 

Figure 9 demonstrates the effect of changing the horizontal position of the nozzle. 
Parts (a) and (b) a r e  for  a low nozzle (YN = l), while par ts  (c) and (d) a r e  for a high noz- 
zle (YN = 2). 
the fuselage becomes quite small  as the nozzles approach the plate. Thus having the fan 
pod adjacent to the fuselage rather  than as shown in figure l(a) will reduce the hot gas  
circulation around the fuselage. Recall that this is a two-dimensional analysis. If the 
nozzles were round rather  than in a slot o r  pod configuration, there  would be an additional 
effect of nozzle spacing resulting from the radial spreading of the flow as it moves out- 
ward along the ground. This effect along with entrainment would tend to decrease the flow 
under the fuselage as the spacing between nozzles is increased. 

The analysis used herein does not 

Actually, there would be interfer-  

The dominant effect is that the flow going to the left and impinging under 
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Figure 10. -Concluded. 
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In each of figures lO(a) and @), the plate width is varied while the nozzle is at a 
fixed position. The (a) and (b) par t s  a r e  for nozzle heights YN = 1 and 2, respectively. 
For the wider plate the deflection of the left-moving s t ream is increased and there  is a 
large stagnation region below the plate, especially when the nozzle is in the lower posi- 
tion. As the plate width is increased, the space between the nozzle and plate is dimin- 
ished, thereby reducing the flow to  the left. Raising the plate while keeping the nozzle 
fixed also increases the jet deflection, as shown in figure 11. 

jection of the plate and the nozzle position. The flow pattern is changed only a small 
amount, the s t ream flowing to the left being turned more by the tilted plate. The exact 
shape of the underside of the fuselage is thus of minor importance. 

The previous figures have given the reader  a quantitative appreciation of the flow 
trends resulting from varying the five independent parameters governing the flow config - 
uration. 
entrainment into the flow regions. 
Lewis Research Center, 

Figure 12 shows the effect of tilting the plate while keeping fixed the horizontal pro- 

The flow patterns can also be used a s  the zeroth order solution for evaluating 

National Aeronautics and Space Administration, 
Cleveland, Ohio, March 24, 1969, 

129 -01 -07 -07 -22. 
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APPENDIX - WORKING FORMULAS FOR COMPUTING FLOW PATTERN 

In this appendix equations (2) and (17) will be rewritten in various forms which a r e  
convenient for  computing the velocities on and the positions of the various boundaries of 
the flow. To accomplish this the quantities defined in appendix B of reference 3 will be 
used. The positions along the free streamlines are found by integrating equation (17) 
along the sides of the rectangle of figure 7 where T = i q a .  By using the various for -  
mulas for the change of argument of elliptic functions, the following relation is obtained 
in which the elliptic functions depend on real  arguments: 

L 
Similarly, along the top of the rectangle, which corresponds to the solid boundaries and 
plane of symmetry, 

6R 

6L 
sn(%,k ' )  + - 

I 

6R I 1 +  - 
L 

Using the results and definitions of appendix B of reference 3 and substituting equa- 
tions (Al) and (A2) in equations (2) and (17) give the following working formulas (note 
that M was defined in equation (18)): 

Position and Corresponding Velocity Along Nozzle Exit 

30 
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Position and Corresponding Velocity Along Ground 

Position and Corresponding Velocity Along Fuselage 

J 
Height of Point  A o n  Fuselage Above Ground 
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Coordinates of Free Streamlines 

Define and Hi as follows 

Then the coordinates 
points D and E are 

along the the right f ree  streamline extending between the 

The last term is the horizontal displacement of the left branch of the jet at infinity. 
The coordinates along the free streamline between C and F a r e  

The coordinates along the f ree  streamline between B and F are  

32 
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